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INTRODUCTION

Biology is currently grappling with the challenge of integrating large datasets with a
body of scientific knowledge that has grown too large and complex for any single
scientist to read or understand. The size and scope of large-scale data compendia (“big
data”) has created analytical challenges that require new solutions, ideally ones that
make use of aggregated scientific knowledge. The capacity of modern experimental
methods to generate data about biological processes has surpassed the ability of
existing informatics approaches to generate meaningful mechanistic explanations.
Mechanistic systems biology models could potentially address this gap, but model
construction remains a labor-intensive process requiring both biological knowledge and
modeling expertise. As a result, modeling studies remain fairly small in scope and are
disconnected from genome-scale research. For mechanistic models to attain the
necessary scope, methods for the automated assembly and analysis of large models
from available knowledge sources will be required. Here we describe the use of the
Integrated Network and Dynamical Reasoning Assembler (INDRA)! to assemble
mechanistic facts from databases and literature into different types of models for
explanation of large datasets.

RESULTS
System architecture and approach

The Integrated Network and Dynamical Reasoning Assembler (INDRA)! automatically
assembles mechanistic models from pathway databases, literature, and expert
knowledge expressed in natural language. INDRA draws on three existing natural
language processing systems*>:® and uses a modular architecture to build different
types of models from a variety of sources.
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modifications, chemical conversions,
protein expression and degradation,
and generic activation/inhibition
relationships.

The assembly challenge

Assembly of a large number of mechanistic facts is analogous to genome assembly:
databases and literature yield a large number of redundant, partially overlapping facts
that may contain errors. Mechanisms must be corrected and “aligned” in order to
produce a set of facts suitable for generating a non-redundant, non-degenerate model.
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and other forms of error correction and
mechanism linking.

Estimating the reliability of extracted mechanisms

Even state-of-the-art NLP and text mining Reading systems produce partially

algorithms have limited accuracy, with roughly overlapping extractions
20-30% of extracted relations representing a

misinterpretation of the corresponding sentence REACH
(“reader error”). Given empirical estimates of
the per-sentence error rate for different readers,
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1) aggregating evidence from multiple
sentences read by the same reader

2) aggregating results from different reading
algorithms on the same sentence

Reliability estimates are propagated
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In directed interaction graphs, the relatively limited causal context leads to an explosion of paths
between any two proteins. This leads to many false positive paths and makes identification of long
causal chains difficult (or even intractable) in large networks.

Generating explanations from the Kappa? rule influence map
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Use case 1: interpreting phosphoproteomic data

RPPA measurements

To evaluate the ability of INDRA to systematically generate
explanations of high-throughput data, we assembled a rule-
based executable model to explain a previously published
dataset of the phospho-proteomic response of a melanoma
cell line to 12 different drugs.? A rule-based model containing
221 proteins and 1451 rules was assembled from
mechanisms extracted from databases and ~95,000
publications (abstracts and full texts). Static analysis of the o
rule influence map provided by Kappa identified possible g ok BBl - |
mechanistic paths linking drug targets to experimentally
observed effects on phosphoprotein abundances.
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Performance: For the largest effects in the data (>50% fold-change) the model generated biochemically
plausible explanations for 20 of the 22 effects (91%). For effects at the 20% fold-change level, the model
explained 95/135 (70%) of O pupesy POl Path
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Use case 2: explaining gene dependency correlations

We are evaluating the effectiveness of our text- Example: correlation of PTPN11 (Shp2)
mined network of ~7.5 million unique with EXTL3: 0.42
interactions mined from the literature to identify
mechanisms mediating correlations between
gene knockouts in the Broad Cancer
Dependency Map dataset (http://depmap.org)
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Of the 1.7 million correlations (absolute value >
0.3) we found that while only 6,043 (0.3%) could
be explained by a known mechanistic link, 22%

could be explained with a single intermediate | U e s |
linking gene, either as a common downstream
target or part of a pathway.
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Network configurations

Explanatory

Direct connection @ @
(All correlations) 155,417,265
Correlations > 0.3 1,763,551 100.0
Direct link 6,043 0.3 Pathway A-B @ > @
Pathway or shared target 380,404 21.6
Correlations explained 386,447 21.9 Pathway B-A ‘ > "

For a subset of 48,000 correlations involving 340 ‘\
, Shared target
cancer-related genes, we found that a higher

proportion (75%) of the correlations can be
explained with a single intermediate linking gene.

Shared regulator
We are building a browser, the INDRA DepMap 5 ./ \‘

Explainer, to explore these explanations.

Not explanatory

INDRA DepMap Explainer

Example Explanation: EXTL3 — FGF2 — PTPN11 Gene Selection
Support for EXTL3->FGF2: o
EXTL3 — X — PTPN11
"These results indicate that by altering HS chain length and composition, EXTL3
mutations potentiate FGF2 signaling, thereby contributing to the pathophysiology of the eawae2
. . . oun statements wi as supject an as object.
skeletal dysplasia observed in the patients.” (PMID 28148688) 1 Activation: EXTLS. activates FGF2.
(1 so )
[See on PubMed ] Source api : reach
" Re d u Ce d eX p re S S i 0 n Of e it h e r E XT 1' E XT2, O r E XT L3 d e C re a S e d h e p a ra n S u |fate d;r;zls:s:s;gt:e:des?;et:]r;a;;\/i/ezltt:r”\ng HS chain length and composition, EXTL3 mutations potentiate FGF2 signaling, thereby contributing to the pathophysiology of the skeletal
. . . . 2. Activation: EXTL3 activates FGF2.
biosynthesis, and consequently suppressed the FGF2 dependent proliferation of mouse o o —
L fi b ro b | a sts -" ( P IVI I D 2 9 3 0 5 908 ) F‘zzzzz;fx?:s]j;:;)Cfee?t‘:\;rr:ﬂd;, EXT2, or EXTL3 decreased heparan sulfate biosynthesis, and consequently suppressed the FGF2 dependent proliferation of mouse L
FGF2, F’"I'PN11
Found 2 statements with FGF2 as subject and PTPN11 as object.
1. Activation: FGF2 activates PTPN11.
Support for FGFZ -> PTPN11: (1 sources)
[See on PubMed] Source api: reach
"In this study, we show that stimulation of C2C12 myoblasts with FGF-2 induces SHP-2 complex formation with tyrosyl phosphorylated FGFR substrate 2 alpha (FRS-2 alpha)."
"In this study, we show that stimulation of C2C12 myoblasts with FGF-2 induces SHP-2 # nereessAmount FErE neresses e smount GTFIFIT bound o STE —
CO m p | eX fo r m at i O n Wit h ty ro Syl p h O S p h o ry I a te d F G F R s u bSt rate 2 a | p h a ( F RS_ 2 a I p h a ) ] " [S:j f:xqubHMBeS\]nizut::aag\;:tee[d FGFR-1 at tyrosine 766, which causes SRC-dependent tyrosine phosphorylation of SHB. SHB also associates constitutively to SHP-2, and

upon FGF-2 stimulation, SHB/SHP-2 bridging promotes FRS-2 phosphorylation and activation. Thus, SHB is required for an adequate activation of the RAS/ERK pathway and
endothelial cell cell mitogenesis [13]."
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